2020-10-23 14:49:44 +00:00
|
|
|
// We use a JavaScript implementation of the Brent method to find the root (the
|
|
|
|
// "zero") of a monotone function. There are other methods like the
|
|
|
|
// Newton-Raphson method, but they take the derivative of the function as an
|
|
|
|
// input, wich in our case is costly to calculate. The Brent method doesn't
|
|
|
|
// need to calculate the derivative.
|
|
|
|
// An interesting description of the algorithm can be found here:
|
|
|
|
// https://blogs.mathworks.com/cleve/2015/10/26/zeroin-part-2-brents-version/
|
|
|
|
|
2017-11-06 19:12:08 +00:00
|
|
|
/**
|
2020-04-30 15:13:45 +00:00
|
|
|
* Copied from https://gist.github.com/borgar/3317728
|
|
|
|
*
|
2017-11-06 19:12:08 +00:00
|
|
|
* Searches the interval from <tt>lowerLimit</tt> to <tt>upperLimit</tt>
|
|
|
|
* for a root (i.e., zero) of the function <tt>func</tt> with respect to
|
|
|
|
* its first argument using Brent's method root-finding algorithm.
|
|
|
|
*
|
|
|
|
* Translated from zeroin.c in http://www.netlib.org/c/brent.shar.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2012 Borgar Thorsteinsson <borgar@borgar.net>
|
|
|
|
* MIT License, http://www.opensource.org/licenses/mit-license.php
|
|
|
|
*
|
2020-10-23 14:49:44 +00:00
|
|
|
* @param func function for which the root is sought.
|
|
|
|
* @param lowerLimit the lower point of the interval to be searched.
|
|
|
|
* @param upperLimit the upper point of the interval to be searched.
|
|
|
|
* @param errorTol the desired accuracy (convergence tolerance).
|
|
|
|
* @param maxIter the maximum number of iterations.
|
|
|
|
* @param acceptableErrorTol return a result even if errorTol isn't reached after maxIter.
|
2017-11-06 19:12:08 +00:00
|
|
|
* @returns an estimate for the root within accuracy.
|
|
|
|
*
|
|
|
|
*/
|
2018-01-03 15:54:19 +00:00
|
|
|
export default function uniroot(
|
2020-04-20 09:46:13 +00:00
|
|
|
func: (x: number) => number,
|
|
|
|
lowerLimit: number,
|
|
|
|
upperLimit: number,
|
2020-10-23 14:49:44 +00:00
|
|
|
errorTol = 0,
|
|
|
|
maxIter = 100,
|
|
|
|
acceptableErrorTol = 0
|
2018-01-03 15:54:19 +00:00
|
|
|
) {
|
2020-04-20 09:46:13 +00:00
|
|
|
let a = lowerLimit,
|
2017-11-06 19:12:08 +00:00
|
|
|
b = upperLimit,
|
|
|
|
c = a,
|
|
|
|
fa = func(a),
|
|
|
|
fb = func(b),
|
|
|
|
fc = fa,
|
2020-04-30 15:13:45 +00:00
|
|
|
actualTolerance: number,
|
|
|
|
newStep: number, // Step at this iteration
|
|
|
|
prevStep: number, // Distance from the last but one to the last approximation
|
2020-04-20 09:46:13 +00:00
|
|
|
p: number, // Interpolation step is calculated in the form p/q; division is delayed until the last moment
|
2020-11-22 16:03:46 +00:00
|
|
|
q: number,
|
|
|
|
fallback: number | undefined = undefined
|
2017-11-06 19:12:08 +00:00
|
|
|
|
|
|
|
while (maxIter-- > 0) {
|
2020-04-30 15:13:45 +00:00
|
|
|
prevStep = b - a
|
2017-11-06 19:12:08 +00:00
|
|
|
|
|
|
|
if (Math.abs(fc) < Math.abs(fb)) {
|
|
|
|
// Swap data for b to be the best approximation
|
2018-01-03 15:54:19 +00:00
|
|
|
;(a = b), (b = c), (c = a)
|
2017-11-06 19:12:08 +00:00
|
|
|
;(fa = fb), (fb = fc), (fc = fa)
|
|
|
|
}
|
|
|
|
|
2020-04-30 15:13:45 +00:00
|
|
|
actualTolerance = 1e-15 * Math.abs(b) + errorTol / 2
|
|
|
|
newStep = (c - b) / 2
|
2017-11-06 19:12:08 +00:00
|
|
|
|
2020-04-30 15:13:45 +00:00
|
|
|
if (Math.abs(newStep) <= actualTolerance || fb === 0) {
|
2017-11-06 19:12:08 +00:00
|
|
|
return b // Acceptable approx. is found
|
|
|
|
}
|
|
|
|
|
|
|
|
// Decide if the interpolation can be tried
|
2020-04-30 15:13:45 +00:00
|
|
|
if (Math.abs(prevStep) >= actualTolerance && Math.abs(fa) > Math.abs(fb)) {
|
|
|
|
// If prevStep was large enough and was in true direction, Interpolatiom may be tried
|
|
|
|
let t1: number, t2: number
|
|
|
|
const cb = c - b
|
2017-11-06 19:12:08 +00:00
|
|
|
if (a === c) {
|
|
|
|
// If we have only two distinct points linear interpolation can only be applied
|
|
|
|
t1 = fb / fa
|
|
|
|
p = cb * t1
|
|
|
|
q = 1.0 - t1
|
|
|
|
} else {
|
|
|
|
// Quadric inverse interpolation
|
2018-01-03 15:54:19 +00:00
|
|
|
;(q = fa / fc), (t1 = fb / fc), (t2 = fb / fa)
|
2017-11-06 19:12:08 +00:00
|
|
|
p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1))
|
|
|
|
q = (q - 1) * (t1 - 1) * (t2 - 1)
|
|
|
|
}
|
|
|
|
|
|
|
|
if (p > 0) {
|
|
|
|
q = -q // p was calculated with the opposite sign; make p positive
|
|
|
|
} else {
|
|
|
|
p = -p // and assign possible minus to q
|
|
|
|
}
|
|
|
|
|
|
|
|
if (
|
2020-04-30 15:13:45 +00:00
|
|
|
p < 0.75 * cb * q - Math.abs(actualTolerance * q) / 2 &&
|
|
|
|
p < Math.abs((prevStep * q) / 2)
|
2017-11-06 19:12:08 +00:00
|
|
|
) {
|
|
|
|
// If (b + p / q) falls in [b,c] and isn't too large it is accepted
|
2020-04-30 15:13:45 +00:00
|
|
|
newStep = p / q
|
2017-11-06 19:12:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// If p/q is too large then the bissection procedure can reduce [b,c] range to more extent
|
|
|
|
}
|
|
|
|
|
2020-04-30 15:13:45 +00:00
|
|
|
if (Math.abs(newStep) < actualTolerance) {
|
2017-11-06 19:12:08 +00:00
|
|
|
// Adjust the step to be not less than tolerance
|
2020-04-30 15:13:45 +00:00
|
|
|
newStep = newStep > 0 ? actualTolerance : -actualTolerance
|
2017-11-06 19:12:08 +00:00
|
|
|
}
|
|
|
|
|
2018-01-03 15:54:19 +00:00
|
|
|
;(a = b), (fa = fb) // Save the previous approx.
|
2020-04-30 15:13:45 +00:00
|
|
|
;(b += newStep), (fb = func(b)) // Do step to a new approxim.
|
2017-11-06 19:12:08 +00:00
|
|
|
|
|
|
|
if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) {
|
2018-01-03 15:54:19 +00:00
|
|
|
;(c = a), (fc = fa) // Adjust c for it to have a sign opposite to that of b
|
2017-11-06 19:12:08 +00:00
|
|
|
}
|
2020-11-22 16:03:46 +00:00
|
|
|
|
|
|
|
if (Math.abs(fb) < acceptableErrorTol) {
|
|
|
|
fallback = b
|
|
|
|
}
|
2017-11-06 19:12:08 +00:00
|
|
|
}
|
2020-11-22 16:03:46 +00:00
|
|
|
return fallback
|
2017-11-06 19:12:08 +00:00
|
|
|
}
|