mon-entreprise/publicodes/source/uniroot.ts

116 lines
3.8 KiB
TypeScript
Raw Normal View History

// We use a JavaScript implementation of the Brent method to find the root (the
// "zero") of a monotone function. There are other methods like the
// Newton-Raphson method, but they take the derivative of the function as an
// input, wich in our case is costly to calculate. The Brent method doesn't
// need to calculate the derivative.
// An interesting description of the algorithm can be found here:
// https://blogs.mathworks.com/cleve/2015/10/26/zeroin-part-2-brents-version/
/**
* Copied from https://gist.github.com/borgar/3317728
*
* Searches the interval from <tt>lowerLimit</tt> to <tt>upperLimit</tt>
* for a root (i.e., zero) of the function <tt>func</tt> with respect to
* its first argument using Brent's method root-finding algorithm.
*
* Translated from zeroin.c in http://www.netlib.org/c/brent.shar.
*
* Copyright (c) 2012 Borgar Thorsteinsson <borgar@borgar.net>
* MIT License, http://www.opensource.org/licenses/mit-license.php
*
* @param func function for which the root is sought.
* @param lowerLimit the lower point of the interval to be searched.
* @param upperLimit the upper point of the interval to be searched.
* @param errorTol the desired accuracy (convergence tolerance).
* @param maxIter the maximum number of iterations.
* @param acceptableErrorTol return a result even if errorTol isn't reached after maxIter.
* @returns an estimate for the root within accuracy.
*
*/
export default function uniroot(
func: (x: number) => number,
lowerLimit: number,
upperLimit: number,
errorTol = 0,
maxIter = 100,
acceptableErrorTol = 0
) {
let a = lowerLimit,
b = upperLimit,
c = a,
fa = func(a),
fb = func(b),
fc = fa,
actualTolerance: number,
newStep: number, // Step at this iteration
prevStep: number, // Distance from the last but one to the last approximation
p: number, // Interpolation step is calculated in the form p/q; division is delayed until the last moment
q: number
while (maxIter-- > 0) {
prevStep = b - a
if (Math.abs(fc) < Math.abs(fb)) {
// Swap data for b to be the best approximation
;(a = b), (b = c), (c = a)
;(fa = fb), (fb = fc), (fc = fa)
}
actualTolerance = 1e-15 * Math.abs(b) + errorTol / 2
newStep = (c - b) / 2
if (Math.abs(newStep) <= actualTolerance || fb === 0) {
return b // Acceptable approx. is found
}
// Decide if the interpolation can be tried
if (Math.abs(prevStep) >= actualTolerance && Math.abs(fa) > Math.abs(fb)) {
// If prevStep was large enough and was in true direction, Interpolatiom may be tried
let t1: number, t2: number
const cb = c - b
if (a === c) {
// If we have only two distinct points linear interpolation can only be applied
t1 = fb / fa
p = cb * t1
q = 1.0 - t1
} else {
// Quadric inverse interpolation
;(q = fa / fc), (t1 = fb / fc), (t2 = fb / fa)
p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1))
q = (q - 1) * (t1 - 1) * (t2 - 1)
}
if (p > 0) {
q = -q // p was calculated with the opposite sign; make p positive
} else {
p = -p // and assign possible minus to q
}
if (
p < 0.75 * cb * q - Math.abs(actualTolerance * q) / 2 &&
p < Math.abs((prevStep * q) / 2)
) {
// If (b + p / q) falls in [b,c] and isn't too large it is accepted
newStep = p / q
}
// If p/q is too large then the bissection procedure can reduce [b,c] range to more extent
}
if (Math.abs(newStep) < actualTolerance) {
// Adjust the step to be not less than tolerance
newStep = newStep > 0 ? actualTolerance : -actualTolerance
}
;(a = b), (fa = fb) // Save the previous approx.
;(b += newStep), (fb = func(b)) // Do step to a new approxim.
if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) {
;(c = a), (fc = fa) // Adjust c for it to have a sign opposite to that of b
}
}
if (Math.abs(fb) < acceptableErrorTol) {
return b
}
}