import {
reduce,
mergeWith,
objOf,
toPairs,
dissoc,
add,
find,
pluck,
map,
any,
equals,
is,
keys,
evolve,
curry,
filter,
pipe,
head,
isEmpty,
propEq,
prop,
has,
max,
min,
subtract,
sum
} from 'ramda'
import React from 'react'
import { Trans } from 'react-i18next'
import { anyNull, val } from './traverse-common-functions'
import { Node } from './mecanismViews/common'
import {
makeJsx,
evaluateNode,
rewriteNode,
evaluateArray,
evaluateArrayWithFilter,
evaluateObject,
parseObject,
collectNodeMissing,
mergeAllMissing,
mergeMissing,
bonus
} from './evaluation'
import {
findRuleByName,
disambiguateRuleReference,
findRuleByDottedName
} from './rules'
import 'react-virtualized/styles.css'
import Somme from './mecanismViews/Somme'
import Barème from './mecanismViews/Barème'
import BarèmeLinéaire from './mecanismViews/BarèmeLinéaire'
import Allègement from './mecanismViews/Allègement'
import { trancheValue } from './mecanisms/barème'
import buildSelectionView from './mecanismViews/Selection'
import uniroot from './uniroot'
let constantNode = constant => ({
nodeValue: constant,
// eslint-disable-next-line
jsx: nodeValue => {nodeValue}
})
let decompose = (recurse, k, v) => {
let subProps = dissoc('composantes')(v),
explanation = v.composantes.map(c => ({
...recurse(
objOf(k, {
...subProps,
...dissoc('attributs')(c)
})
),
composante: c.nom ? { nom: c.nom } : c.attributs
}))
let jsx = (nodeValue, explanation) => (
{explanation.map(c => [
{toPairs(c.composante).map(([k, v]) => (
-
{k}:{' '}
{v}
))}
{makeJsx(c)}
])}
}
/>
)
let filter = situationGate => c =>
!situationGate('sys.filter') ||
!c.composante ||
((!c.composante['dû par'] ||
c.composante['dû par'] == situationGate('sys.filter')) &&
(!c.composante['impôt sur le revenu'] ||
c.composante['impôt sur le revenu'] == situationGate('sys.filter')))
return {
explanation,
jsx,
evaluate: evaluateArrayWithFilter(filter, add, 0),
category: 'mecanism',
name: 'composantes',
type: 'numeric'
}
}
let devariate = (recurse, k, v) => {
let subProps = dissoc('variations')(v),
explanation = v.variations.map(c => ({
...recurse(
objOf(k, {
...subProps,
...dissoc('si')(c)
})
),
condition: recurse(c.si)
}))
let evaluate = (cache, situationGate, parsedRules, node) => {
let evaluateOne = child => {
let condition = evaluateNode(
cache,
situationGate,
parsedRules,
child.condition
)
return {
...evaluateNode(cache, situationGate, parsedRules, child),
condition
}
}
let explanation = map(evaluateOne, node.explanation),
candidates = filter(
node => node.condition.nodeValue !== false,
explanation
),
satisfied = filter(node => node.condition.nodeValue, explanation),
choice = head(satisfied),
nodeValue = choice ? choice.nodeValue : null
let leftMissing = choice
? {}
: mergeAllMissing(pluck('condition', explanation)),
rightMissing = mergeAllMissing(candidates),
missingVariables = mergeMissing(bonus(leftMissing), rightMissing)
return rewriteNode(node, nodeValue, explanation, missingVariables)
}
// TODO - find an appropriate representation
let jsx = (nodeValue, explanation) => (
{explanation.map(c => (
{makeJsx(c.condition)}
{makeJsx(c)}
))}
}
/>
)
return {
explanation,
evaluate,
jsx,
category: 'mecanism',
name: 'variations',
type: 'numeric'
}
}
export let mecanismOneOf = (recurse, k, v) => {
if (!is(Array, v)) throw new Error('should be array')
let explanation = map(recurse, v)
let jsx = (nodeValue, explanation) => (
{explanation.map(item => (
{makeJsx(item)}
))}
}
/>
)
let evaluate = (cache, situationGate, parsedRules, node) => {
let evaluateOne = child =>
evaluateNode(cache, situationGate, parsedRules, child),
explanation = map(evaluateOne, node.explanation),
values = pluck('nodeValue', explanation),
nodeValue = any(equals(true), values)
? true
: any(equals(null), values)
? null
: false,
// Unlike most other array merges of missing variables this is a "flat" merge
// because "one of these conditions" tend to be several tests of the same variable
// (e.g. contract type is one of x, y, z)
missingVariables =
nodeValue == null
? reduce(mergeWith(max), {}, map(collectNodeMissing, explanation))
: {}
return rewriteNode(node, nodeValue, explanation, missingVariables)
}
return {
evaluate,
jsx,
explanation,
category: 'mecanism',
name: 'une de ces conditions',
type: 'boolean'
}
}
export let mecanismAllOf = (recurse, k, v) => {
if (!is(Array, v)) throw new Error('should be array')
let explanation = map(recurse, v)
let jsx = (nodeValue, explanation) => (
{explanation.map(item => (
{makeJsx(item)}
))}
}
/>
)
let evaluate = (cache, situationGate, parsedRules, node) => {
let evaluateOne = child =>
evaluateNode(cache, situationGate, parsedRules, child),
explanation = map(evaluateOne, node.explanation),
values = pluck('nodeValue', explanation),
nodeValue = any(equals(false), values)
? false // court-circuit
: any(equals(null), values)
? null
: true,
missingVariables = nodeValue == null ? mergeAllMissing(explanation) : {}
return rewriteNode(node, nodeValue, explanation, missingVariables)
}
return {
evaluate: evaluate,
jsx,
explanation,
category: 'mecanism',
name: 'toutes ces conditions',
type: 'boolean'
}
}
export let mecanismNumericalSwitch = (recurse, k, v) => {
// Si "l'aiguillage" est une constante ou une référence directe à une variable;
// l'utilité de ce cas correspond à un appel récursif au mécanisme
if (is(String, v)) return recurse(v)
if (!is(Object, v) || keys(v).length == 0) {
throw new Error(
'Le mécanisme "aiguillage numérique" et ses sous-logiques doivent contenir au moins une proposition'
)
}
// les termes sont les couples (condition, conséquence) de l'aiguillage numérique
let terms = toPairs(v)
// la conséquence peut être un 'string' ou un autre aiguillage numérique
let parseCondition = ([condition, consequence]) => {
let conditionNode = recurse(condition), // can be a 'comparison', a 'variable', TODO a 'negation'
consequenceNode = mecanismNumericalSwitch(recurse, condition, consequence)
let evaluate = (cache, situationGate, parsedRules, node) => {
let explanation = evolve(
{
condition: curry(evaluateNode)(cache, situationGate, parsedRules),
consequence: curry(evaluateNode)(cache, situationGate, parsedRules)
},
node.explanation
),
leftMissing = explanation.condition.missingVariables,
investigate = explanation.condition.nodeValue !== false,
rightMissing = investigate
? explanation.consequence.missingVariables
: {},
missingVariables = mergeMissing(bonus(leftMissing), rightMissing)
return {
...node,
explanation,
missingVariables,
nodeValue: explanation.consequence.nodeValue,
condValue: explanation.condition.nodeValue
}
}
let jsx = (nodeValue, { condition, consequence }) => (
{makeJsx(condition)}
{makeJsx(consequence)}
)
return {
evaluate,
jsx,
explanation: { condition: conditionNode, consequence: consequenceNode },
category: 'condition',
text: condition,
condition: conditionNode,
type: 'boolean'
}
}
let evaluateTerms = (cache, situationGate, parsedRules, node) => {
let evaluateOne = child =>
evaluateNode(cache, situationGate, parsedRules, child),
explanation = map(evaluateOne, node.explanation),
nonFalsyTerms = filter(node => node.condValue !== false, explanation),
getFirst = o =>
pipe(
head,
prop(o)
)(nonFalsyTerms),
nodeValue =
// voilà le "numérique" dans le nom de ce mécanisme : il renvoie zéro si aucune condition n'est vérifiée
isEmpty(nonFalsyTerms)
? 0
: // c'est un 'null', on renvoie null car des variables sont manquantes
getFirst('condValue') == null
? null
: // c'est un true, on renvoie la valeur de la conséquence
getFirst('nodeValue'),
choice = find(node => node.condValue, explanation),
missingVariables = choice
? choice.missingVariables
: mergeAllMissing(explanation)
return rewriteNode(node, nodeValue, explanation, missingVariables)
}
let explanation = map(parseCondition, terms)
let jsx = (nodeValue, explanation) => (
{explanation.map(item => (
{makeJsx(item)}
))}
}
/>
)
return {
evaluate: evaluateTerms,
jsx,
explanation,
category: 'mecanism',
name: 'aiguillage numérique',
type: 'boolean || numeric' // lol !
}
}
export let findInversion = (situationGate, rules, v, dottedName) => {
let inversions = v.avec
if (!inversions)
throw new Error(
"Une formule d'inversion doit préciser _avec_ quoi on peut inverser la variable"
)
/*
Quelle variable d'inversion possible a sa valeur renseignée dans la situation courante ?
Ex. s'il nous est demandé de calculer le salaire de base, est-ce qu'un candidat à l'inversion, comme
le salaire net, a été renseigné ?
*/
let fixedObjective = inversions
.map(i =>
disambiguateRuleReference(
rules,
rules.find(propEq('dottedName', dottedName)),
i
)
)
.find(name => situationGate(name) != undefined)
if (fixedObjective == null) return { inversionChoiceNeeded: true }
//par exemple, fixedObjective = 'salaire net', et v('salaire net') == 2000
return {
fixedObjective,
fixedObjectiveValue: situationGate(fixedObjective),
fixedObjectiveRule: findRuleByDottedName(rules, fixedObjective)
}
}
let doInversion = (oldCache, situationGate, parsedRules, v, dottedName) => {
let inversion = findInversion(situationGate, parsedRules, v, dottedName)
if (inversion.inversionChoiceNeeded)
return {
missingVariables: { [dottedName]: 1 },
nodeValue: null
}
let { fixedObjectiveValue, fixedObjectiveRule } = inversion
let inversionCache = {}
let fx = x => {
inversionCache = { parseLevel: oldCache.parseLevel + 1, op: '<' }
return evaluateNode(
inversionCache, // with an empty cache
n => (dottedName === n ? x : situationGate(n)),
parsedRules,
fixedObjectiveRule
)
}
// si fx renvoie null pour une valeur numérique standard, disons 1000, on peut
// considérer que l'inversion est impossible du fait de variables manquantes
// TODO fx peut être null pour certains x, et valide pour d'autres : on peut implémenter ici le court-circuit
let attempt = fx(1000)
if (attempt.nodeValue == null) {
return attempt
}
let tolerancePercentage = 0.00001,
// cette fonction détermine la racine d'une fonction sans faire trop d'itérations
nodeValue = uniroot(
x => fx(x).nodeValue - fixedObjectiveValue,
0,
1000000000,
tolerancePercentage * fixedObjectiveValue,
100
)
return {
nodeValue,
missingVariables: {},
inversionCache
}
}
export let mecanismInversion = dottedName => (recurse, k, v) => {
let evaluate = (cache, situationGate, parsedRules, node) => {
let inversion =
// avoid the inversion loop !
situationGate(dottedName) == undefined &&
doInversion(cache, situationGate, parsedRules, v, dottedName),
// TODO - ceci n'est pas vraiment satisfaisant
nodeValue = situationGate(dottedName)
? Number.parseFloat(situationGate(dottedName))
: inversion.nodeValue,
missingVariables = inversion.missingVariables
let evaluatedNode = rewriteNode(node, nodeValue, null, missingVariables)
// TODO - we need this so that ResultsGrid will work, but it's
// just not right
toPairs(inversion.inversionCache).map(([k, v]) => (cache[k] = v))
return evaluatedNode
}
return {
...v,
evaluate,
// eslint-disable-next-line
jsx: nodeValue => (
avec
{v.avec
.map(recurse)
.map(el => - {makeJsx(el)}
)}
}
/>
),
category: 'mecanism',
name: 'inversion',
type: 'numeric'
}
}
export let mecanismSum = (recurse, k, v) => {
let explanation = v.map(recurse)
let evaluate = evaluateArray(add, 0)
return {
evaluate,
// eslint-disable-next-line
jsx: (nodeValue, explanation) => (
),
explanation,
category: 'mecanism',
name: 'somme',
type: 'numeric'
}
}
export let mecanismReduction = (recurse, k, v) => {
let objectShape = {
assiette: false,
abattement: constantNode(0),
franchise: constantNode(0)
}
let effect = ({ assiette, abattement, franchise, décote }) => {
let v_assiette = val(assiette)
if (v_assiette == null) return null
let montantFranchiséDécoté =
val(franchise) && v_assiette < val(franchise)
? 0
: décote
? do {
let plafond = val(décote.plafond),
taux = val(décote.taux)
v_assiette > plafond
? v_assiette
: max(0, (1 + taux) * v_assiette - taux * plafond)
}
: v_assiette
return abattement
? val(abattement) == null
? montantFranchiséDécoté === 0
? 0
: null
: abattement.category === 'percentage'
? max(
0,
montantFranchiséDécoté - val(abattement) * montantFranchiséDécoté
)
: max(0, montantFranchiséDécoté - val(abattement))
: montantFranchiséDécoté
}
let base = parseObject(recurse, objectShape, v),
explanation = v.décote
? {
...base,
décote: map(recurse, v.décote)
}
: base,
evaluate = evaluateObject(objectShape, effect)
return {
evaluate,
jsx: Allègement,
explanation,
category: 'mecanism',
name: 'allègement',
type: 'numeric'
}
}
export let mecanismProduct = (recurse, k, v) => {
if (v.composantes) {
//mécanisme de composantes. Voir known-mecanisms.md/composantes
return decompose(recurse, k, v)
}
if (v.variations) {
return devariate(recurse, k, v)
}
let objectShape = {
assiette: false,
taux: constantNode(1),
facteur: constantNode(1),
plafond: constantNode(Infinity)
}
let effect = ({ assiette, taux, facteur, plafond }) => {
let mult = (base, rate, facteur, plafond) =>
Math.min(base, plafond) * rate * facteur
return val(taux) === 0 ||
val(taux) === false ||
val(assiette) === 0 ||
val(facteur) === 0
? 0
: anyNull([taux, assiette, facteur, plafond])
? null
: mult(val(assiette), val(taux), val(facteur), val(plafond))
}
let explanation = parseObject(recurse, objectShape, v),
evaluate = evaluateObject(objectShape, effect)
let jsx = (nodeValue, explanation) => (
assiette:{' '}
{makeJsx(explanation.assiette)}
{(explanation.taux.nodeValue != 1 ||
explanation.taux.category == 'calcExpression') && (
taux:{' '}
{makeJsx(explanation.taux)}
)}
{(explanation.facteur.nodeValue != 1 ||
explanation.taux.category == 'calcExpression') && (
facteur:{' '}
{makeJsx(explanation.facteur)}
)}
{explanation.plafond.nodeValue != Infinity && (
plafond:{' '}
{makeJsx(explanation.plafond)}
)}
}
/>
)
return {
evaluate,
jsx,
explanation,
category: 'mecanism',
name: 'multiplication',
type: 'numeric'
}
}
/* on réécrit en une syntaxe plus bas niveau mais plus régulière les tranches :
`en-dessous de: 1`
devient
```
de: 0
à: 1
```
*/
let desugarScale = recurse => tranches =>
tranches
.map(
t =>
has('en-dessous de')(t)
? { ...t, de: 0, à: t['en-dessous de'] }
: has('au-dessus de')(t)
? { ...t, de: t['au-dessus de'], à: Infinity }
: t
)
.map(evolve({ taux: recurse }))
export let mecanismLinearScale = (recurse, k, v) => {
let tranches = desugarScale(recurse)(v['tranches']),
objectShape = {
assiette: false
}
let effect = ({ assiette, tranches }) => {
if (val(assiette) === null) return null
let matchedTranche = tranches.find(
({ de: min, à: max }) => val(assiette) >= min && val(assiette) < max
)
if (!matchedTranche) return 0
return matchedTranche.taux.nodeValue * val(assiette)
}
let explanation = {
...parseObject(recurse, objectShape, v),
tranches
},
evaluate = evaluateObject(objectShape, effect)
return {
evaluate,
jsx: BarèmeLinéaire,
explanation,
category: 'mecanism',
name: 'barème linéaire',
barème: 'en taux',
type: 'numeric'
}
}
export let mecanismScale = (recurse, k, v) => {
// Sous entendu : barème en taux marginaux.
if (v.composantes) {
//mécanisme de composantes. Voir known-mecanisms.md/composantes
return decompose(recurse, k, v)
}
if (v.variations) {
return devariate(recurse, k, v)
}
let tranches = desugarScale(recurse)(v['tranches']),
objectShape = {
assiette: false,
'multiplicateur des tranches': constantNode(1)
}
let effect = ({
assiette,
'multiplicateur des tranches': multiplicateur,
tranches
}) => {
let nulled = val(assiette) == null || val(multiplicateur) == null
return nulled
? null
: sum(tranches.map(trancheValue(assiette, multiplicateur)))
}
let explanation = {
...parseObject(recurse, objectShape, v),
tranches
},
evaluate = evaluateObject(objectShape, effect)
return {
evaluate,
jsx: Barème,
explanation,
category: 'mecanism',
name: 'barème',
barème: 'en taux marginaux',
type: 'numeric'
}
}
export let mecanismMax = (recurse, k, v) => {
let explanation = v.map(recurse)
let evaluate = evaluateArray(max, Number.NEGATIVE_INFINITY)
let jsx = (nodeValue, explanation) => (
{explanation.map((item, i) => (
{v[i].description}
{makeJsx(item)}
))}
}
/>
)
return {
evaluate,
jsx,
explanation,
type: 'numeric',
category: 'mecanism',
name: 'le maximum de'
}
}
export let mecanismMin = (recurse, k, v) => {
let explanation = v.map(recurse)
let evaluate = evaluateArray(min, Infinity)
let jsx = (nodeValue, explanation) => (
{explanation.map((item, i) => (
{v[i].description}
{makeJsx(item)}
))}
}
/>
)
return {
evaluate,
jsx,
explanation,
type: 'numeric',
category: 'mecanism',
name: 'le minimum de'
}
}
export let mecanismComplement = (recurse, k, v) => {
if (v.composantes) {
//mécanisme de composantes. Voir known-mecanisms.md/composantes
return decompose(recurse, k, v)
}
let objectShape = { cible: false, montant: false }
let effect = ({ cible, montant }) => {
let nulled = val(cible) == null
return nulled ? null : subtract(val(montant), min(val(cible), val(montant)))
}
let explanation = parseObject(recurse, objectShape, v)
return {
evaluate: evaluateObject(objectShape, effect),
explanation,
type: 'numeric',
category: 'mecanism',
name: 'complément pour atteindre',
// eslint-disable-next-line
jsx: (nodeValue, explanation) => (
cible:{' '}
{makeJsx(explanation.cible)}
montant à atteindre:{' '}
{makeJsx(explanation.montant)}
}
/>
)
}
}
export let mecanismSelection = (recurse, k, v) => {
if (v.composantes) {
//mécanisme de composantes. Voir known-mecanisms.md/composantes
return decompose(recurse, k, v)
}
let dataSourceName = v['données']
let dataSearchField = v['dans']
let dataTargetName = v['renvoie']
let explanation = recurse(v['cherche'])
let evaluate = (cache, situationGate, parsedRules, node) => {
let explanation = evaluateNode(
cache,
situationGate,
parsedRules,
node.explanation
),
dataSource = findRuleByName(parsedRules, dataSourceName),
data = dataSource ? dataSource['data'] : null,
dataKey = explanation.nodeValue,
found =
data && dataKey && dataSearchField
? find(item => item[dataSearchField] == dataKey, data)
: null,
// return 0 if we found a match for the lookup but not for the specific field,
// so that component sums don't sum to null
nodeValue =
(found &&
found[dataTargetName] &&
Number.parseFloat(found[dataTargetName]) / 100) ||
0,
missingVariables = explanation.missingVariables
return rewriteNode(node, nodeValue, explanation, missingVariables)
}
let SelectionView = buildSelectionView(dataTargetName)
return {
evaluate,
explanation,
// eslint-disable-next-line
jsx: (nodeValue, explanation) => (
)
}
}
export let mecanismError = (recurse, k, v) => {
throw new Error("Le mécanisme '" + k + "' est inconnu !" + v)
}