import R from 'ramda' import Question from 'Components/conversation/Question' import Input from 'Components/conversation/Input' import Select from 'Components/conversation/select/Select' import SelectAtmp from 'Components/conversation/select/SelectTauxRisque' import formValueTypes from 'Components/conversation/formValueTypes' import { findRuleByDottedName, disambiguateRuleReference } from './rules' import { collectNodeMissing } from './evaluation' /* COLLECTE DES VARIABLES MANQUANTES ********************************* on collecte les variables manquantes : celles qui sont nécessaires pour remplir les objectifs de la simulation (calculer des cotisations) mais qui n'ont pas encore été renseignées TODO perf : peut-on le faire en même temps que l'on traverse l'AST ? Oui sûrement, cette liste se complète en remontant l'arbre. En fait, on le fait déjà pour nodeValue, et quand nodeValue vaut null, c'est qu'il y a des missingVariables ! Il suffit donc de remplacer les null par un tableau, et d'ailleurs utiliser des fonction d'aide pour mutualiser ces tests. missingVariables: {variable: [objectives]} */ export let collectMissingVariables = targets => R.pipe( R.chain(v => R.pipe(collectNodeMissing, R.flatten, R.map(mv => [v.dottedName, mv]))(v) ), //groupBy missing variable but remove mv from value, it's now in the key R.groupBy(R.last), R.map(R.map(R.head)) // below is a hand implementation of above... function composition can be nice sometimes :') // R.reduce( (memo, [mv, dependencyOf]) => ({...memo, [mv]: [...(memo[mv] || []), dependencyOf] }), {}) )(targets) export let getNextSteps = (situationGate, analysis) => { let impact = ([, objectives]) => R.length(objectives) let missingVariables = collectMissingVariables(analysis.targets), pairs = R.toPairs(missingVariables), sortedPairs = R.sort(R.descend(impact), pairs) return R.map(R.head, sortedPairs) } let isVariant = R.path(['formule', 'une possibilité']) let buildVariantTree = (allRules, path) => { let rec = path => { let node = findRuleByDottedName(allRules, path), variant = isVariant(node), variants = variant && R.unless(R.is(Array), R.prop('possibilités'))(variant), shouldBeExpanded = variant && true, //variants.find( v => relevantPaths.find(rp => R.contains(path + ' . ' + v)(rp) )), canGiveUp = variant && !variant['choix obligatoire'] return Object.assign( node, shouldBeExpanded ? { canGiveUp, children: variants.map(v => rec(path + ' . ' + v)) } : null ) } return rec(path) } let buildPossibleInversion = (rule, flatRules, targetNames) => { let ruleInversions = R.path(['formule', 'inversion', 'avec'])(rule) if (!ruleInversions) return null let inversionObjects = ruleInversions.map(i => findRuleByDottedName( flatRules, disambiguateRuleReference(flatRules, rule, i) ) ), yo = R.reject(({ name }) => targetNames.includes(name))([rule].concat(inversionObjects)) return { inversions: yo, question: rule.formule.inversion.question, title: rule.formule.inversion.titre } } export let makeQuestion = (flatRules, targetNames) => dottedName => { let rule = findRuleByDottedName(flatRules, dottedName) let inputQuestion = rule => ({ component: Input, valueType: formValueTypes[rule.format], attributes: { inputMode: 'numeric', placeholder: 'votre réponse' }, suggestions: rule.suggestions, inversion: buildPossibleInversion(rule, flatRules, targetNames) }) let selectQuestion = rule => ({ component: Select, valueType: formValueTypes[rule.format], suggestions: rule.suggestions }) let selectAtmp = rule => ({ component: SelectAtmp, valueType: formValueTypes[rule.format], suggestions: rule.suggestions }) let binaryQuestion = rule => ({ component: Question, choices: [{ value: 'non', label: 'Non' }, { value: 'oui', label: 'Oui' }] }) let multiChoiceQuestion = rule => ({ component: Question, choices: buildVariantTree(flatRules, dottedName) }) return Object.assign( rule, isVariant(rule) ? multiChoiceQuestion(rule) : rule.format == null ? binaryQuestion(rule) : typeof rule.suggestions == 'string' ? rule.suggestions == 'atmp-2017' ? selectAtmp(rule) : selectQuestion(rule) : inputQuestion(rule) ) }