import { flatten, mergeAll, add, values, pipe, sortBy, pluck, fromPairs, uniq, countBy, toPairs, map, head, unless, is, prop, pick, reject, identity } from 'ramda' import React from 'react' import Question from 'Components/conversation/Question' import Input from 'Components/conversation/Input' import Select from 'Components/conversation/select/Select' import SelectAtmp from 'Components/conversation/select/SelectTauxRisque' import formValueTypes from 'Components/conversation/formValueTypes' import InversionInput from '../components/conversation/InversionInput' import { findRuleByDottedName, disambiguateRuleReference, queryRule } from './rules' /* COLLECTE DES VARIABLES MANQUANTES ********************************* on collecte les variables manquantes : celles qui sont nécessaires pour remplir les objectifs de la simulation (calculer des cotisations) mais qui n'ont pas encore été renseignées TODO perf : peut-on le faire en même temps que l'on traverse l'AST ? Oui sûrement, cette liste se complète en remontant l'arbre. En fait, on le fait déjà pour nodeValue, et quand nodeValue vaut null, c'est qu'il y a des missingVariables ! Il suffit donc de remplacer les null par un tableau, et d'ailleurs utiliser des fonction d'aide pour mutualiser ces tests. missingVariables: {variable: [objectives]} */ export let collectMissingVariables = targets => mergeAll(pluck('missingVariables', targets)) export let collectMissingVariablesByTarget = targets => fromPairs(targets.map(target => [target, target.missingVariables])) export let getNextSteps = missingVariablesByTarget => { let impact = ([, count]) => count let missingVariables = mergeAll(values(missingVariablesByTarget)), pairs = toPairs(missingVariables), sortedPairs = sort(descend(impact), pairs) return map(head, sortedPairs) } let isVariant = rule => queryRule(rule.raw)('formule . une possibilité') let buildVariantTree = (allRules, path) => { let rec = path => { let node = findRuleByDottedName(allRules, path), variant = isVariant(node), variants = variant && unless(is(Array), prop('possibilités'))(variant), shouldBeExpanded = variant && true, //variants.find( v => relevantPaths.find(rp => contains(path + ' . ' + v)(rp) )), canGiveUp = variant && !variant['choix obligatoire'] return Object.assign( node, shouldBeExpanded ? { canGiveUp, children: variants.map(v => rec(path + ' . ' + v)) } : null ) } return rec(path) } let buildPossibleInversion = (rule, rules, targetNames) => { let query = queryRule(rule), inversion = query('formule . inversion') if (!inversion) return null let inversionObjects = query('formule . inversion . avec').map(i => findRuleByDottedName(rules, disambiguateRuleReference(rules, rule, i)) ), inversions = reject(({ name }) => targetNames.includes(name))( [rule].concat(inversionObjects) ) return { inversions, question: query('formule . inversion . question') } } // This function takes the unknown rule and finds which React component should be displayed to get a user input through successive if statements // That's not great, but we won't invest more time until we have more diverse input components and a better type system. export let getInputComponent = ({ unfolded }) => ( rules, targetNames ) => dottedName => { let rule = findRuleByDottedName(rules, dottedName) let commonProps = { key: dottedName, unfolded, fieldName: dottedName, ...pick(['dottedName', 'title', 'question', 'defaultValue'], rule) } if (isVariant(rule)) return ( ) if (rule.format == null) return ( ) if (rule.suggestions == 'atmp-2017') return ( ) if (typeof rule.suggestions == 'string') return ( ) }