/** * Searches the interval from lowerLimit to upperLimit * for a root (i.e., zero) of the function func with respect to * its first argument using Brent's method root-finding algorithm. * * Translated from zeroin.c in http://www.netlib.org/c/brent.shar. * * Copyright (c) 2012 Borgar Thorsteinsson * MIT License, http://www.opensource.org/licenses/mit-license.php * * @param {function} function for which the root is sought. * @param {number} the lower point of the interval to be searched. * @param {number} the upper point of the interval to be searched. * @param {number} the desired accuracy (convergence tolerance). * @param {number} the maximum number of iterations. * @returns an estimate for the root within accuracy. * */ export default function uniroot(func, lowerLimit, upperLimit, errorTol, maxIter) { var a = lowerLimit, b = upperLimit, c = a, fa = func(a), fb = func(b), fc = fa, tol_act, // Actual tolerance new_step, // Step at this iteration prev_step, // Distance from the last but one to the last approximation p, // Interpolation step is calculated in the form p/q; division is delayed until the last moment q errorTol = errorTol || 0 maxIter = maxIter || 1000 while (maxIter-- > 0) { prev_step = b - a if (Math.abs(fc) < Math.abs(fb)) { // Swap data for b to be the best approximation (a = b), (b = c), (c = a) ;(fa = fb), (fb = fc), (fc = fa) } tol_act = 1e-15 * Math.abs(b) + errorTol / 2 new_step = (c - b) / 2 if (Math.abs(new_step) <= tol_act || fb === 0) { return b // Acceptable approx. is found } // Decide if the interpolation can be tried if (Math.abs(prev_step) >= tol_act && Math.abs(fa) > Math.abs(fb)) { // If prev_step was large enough and was in true direction, Interpolatiom may be tried var t1, cb, t2 cb = c - b if (a === c) { // If we have only two distinct points linear interpolation can only be applied t1 = fb / fa p = cb * t1 q = 1.0 - t1 } else { // Quadric inverse interpolation (q = fa / fc), (t1 = fb / fc), (t2 = fb / fa) p = t2 * (cb * q * (q - t1) - (b - a) * (t1 - 1)) q = (q - 1) * (t1 - 1) * (t2 - 1) } if (p > 0) { q = -q // p was calculated with the opposite sign; make p positive } else { p = -p // and assign possible minus to q } if ( p < 0.75 * cb * q - Math.abs(tol_act * q) / 2 && p < Math.abs(prev_step * q / 2) ) { // If (b + p / q) falls in [b,c] and isn't too large it is accepted new_step = p / q } // If p/q is too large then the bissection procedure can reduce [b,c] range to more extent } if (Math.abs(new_step) < tol_act) { // Adjust the step to be not less than tolerance new_step = new_step > 0 ? tol_act : -tol_act } (a = b), (fa = fb) // Save the previous approx. ;(b += new_step), (fb = func(b)) // Do step to a new approxim. if ((fb > 0 && fc > 0) || (fb < 0 && fc < 0)) { (c = a), (fc = fa) // Adjust c for it to have a sign opposite to that of b } } } /* var test_counter; function f1 (x) { test_counter++; return (Math.pow(x,2)-1)*x - 5; } function f2 (x) { test_counter++; return Math.cos(x)-x; } function f3 (x) { test_counter++; return Math.sin(x)-x; } function f4 (x) { test_counter++; return (x + 3) * Math.pow(x - 1, 2); } [ [f1, 2, 3], [f2, 2, 3], [f2, -1, 3], [f3, -1, 3], [f4, -4, 4/3] ].forEach(function (args) { test_counter = 0; var root = uniroot.apply( pv, args ); ;;;console.log( 'uniroot:', args.slice(1), root, test_counter ); }) */